Structure and Function of Skeletal Muscle

1. Human body contains over 400 skeletal muscles.
 - 40-50% of total body weight
2. Functions of skeletal muscle:
 - Force production for locomotion and breathing
 - Force production for postural support
 - Heat production during cold stress

Structure of Skeletal Muscle: Connective Tissue Covering

- Epimysium
 - Surrounds entire muscle
- Perimysium
 - Surrounds bundles of muscle fibers
 - Fascicles
- Endomysium
 - Surrounds individual muscle fibers

Structure of Skeletal Muscle: Microstructure

- Sarcolemma
 - Muscle cell membrane
- Myofibrils
 - Threadlike strands within muscle fibers
 - Actin (thin filament)
 - Tropomycin
 - Myosin (thick filament)

Structure of Skeletal Muscle: The Sarcomere

- Further divisions of myofibrils
 - Z-line
 - A-band
 - I-band
- Within the sarcoplasm
 - Sarcolemmal reticulum
 - Storage sites for calcium
 - Transverse tubules
 - Terminal cisternae

The Neuromuscular Junction

- Site where motor neuron meets the muscle fiber
- Separated by gap called the neuromuscular cleft
- Motor end plate
 - Pocket formed around motor neuron by sarcolemma
 - Acetylcholine is released from the motor neuron
 - Causes an end-plate potential (EPP)
 - Depolarization of muscle fiber

Motor Unit

- Single motor neuron & muscle fibers it innervates
- Eye muscles – 1:1 muscle/nerve ratio
- Hamstrings – 300:1 muscle/nerve ratio

Illustration of the Neuromuscular Junction
Muscular Contraction

- The sliding filament model
 - Muscle shortening occurs due to the movement of the actin filament over the myosin filament
 - Formation of cross-bridges between actin and myosin filaments
 - Reduction in the distance between Z-lines of the sarcomere

Cross-bridge Formation in Muscle Contraction

- Formation of cross-bridges between actin and myosin filaments

Muscle Function

- All or none law – fiber contracts completely or not at all
- Muscle strength gradation
 - Multiple motor unit summation – more motor units per unit of time
 - Wave summation – vary frequency of contraction of individual motor units

Energy for Muscle Contraction

- ATP is required for muscle contraction
 - Myosin ATPase breaks down ATP as fiber contracts

Sources of ATP

- Phosphocreatine (PC)
- Glycolysis
- Oxidative phosphorylation

Individual Fiber Types

- Fast fibers
 - Type IIb fibers
 - Fast-glycolytic fibers
- Slow fibers
 - Type I fibers
 - Slow-oxidative fibers

Properties of Muscle Fibers

- Biochemical properties
 - Oxidative capacity
 - Type of ATPase
- Contractile properties
 - Maximal force production
 - Speed of contraction
 - Muscle fiber efficiency

Sources of ATP for Muscle Contraction

- ATP: ADP & Pi + energy
- Recharging: reload cross-bridge with ATP
- Relaxation: cross-bridges “turned off”
Comparison of Maximal Shortening Velocities Between Fiber Types

Histochemical Staining of Fiber Type

Alteration of Fiber Type by Training

Endurance and resistance training
- Cannot change fast fibers to slow fibers
- Can result in shift from Type IIb to IIa fibers
 - Toward more oxidative properties

Age-Related Changes in Skeletal Muscle

Aging is associated with a loss of muscle mass
- Rate increases after 50 years of age
- Regular exercise training can improve strength and endurance
 - Cannot completely eliminate the age-related loss in muscle mass

Fiber Types and Performance

Power athletes
 - Sprinters
 - Possess high percentage of fast fibers
Endurance athletes
 - Distance runners
 - Have high percentage of slow fibers
Others
 - Weight lifters and nonathletes
 - Have about 50% slow and 50% fast fibers

Training-Induced Changes in Muscle Fiber Type

Isotonic and Isometric Contractions

Hypertrophy and Hyperplasia
- Increase in size
- Increase in number

Isometric
 - Muscle exerts force without changing length
 - Pulling against immovable object
 - Postural muscles

Isotonic (dynamically)
 - Convergent
 - Muscle shortens during force production
 - Eccentric
 - Muscle produces force but length increases

Types of Muscle Contraction

Force Regulation in Muscle
- Types and number of motor units recruited
- More motor units = greater force
- Fast motor units = greater force
- Initial muscle length
 - "Ideal" length for force generation
- Nature of the motor units neural stimulation
 - Frequency of stimulation
 - Single twitch, summation, and tetanus
Relationship Between Stimulus Frequency and Force Generation

Force-Velocity Relationship
- At any absolute force the speed of movement is greater in muscle with higher percent of fast-twitch fibers.
- The maximum velocity of shortening is greatest at the lowest force.
- True for both slow and fast-twitch fibers.

Length-Tension Relationship in Skeletal Muscle

Force-Velocity Relationship

Force-Power Relationship

Receptors in Muscle
- Muscle spindle:
 - Detect dynamic and static changes in muscle length.
 - Stretch reflex:
 - Stretch on muscle causes reflex contraction.
- Golgi tendon organ (GTO):
 - Monitor tension developed in muscle.
 - Prevents damage during excessive force generation.
 - Stimulation results in reflex relaxation of muscle.

Simple Twitch, Summation, and Tetanus

Force-Power Relationship
- At any given velocity of movement the power generated is greater in a muscle with a higher percent of fast-twitch fibers.
- The peak power increases with velocity up to movement speed of 200-300 degrees/second.
- Force decreases with increasing movement speed beyond this velocity.

Golgi Tendon Organ