1. Are there P waves?
2. Are they regular?
3. Does every one precede a QRS?
4. Is the PR interval constant?
5. What is the PR interval?

ANSWER

1. Yes
2. regular on electrode { iv}
3. Yes
4. Yes in lead (iV)
5. 0.08
Calculate the HR

• Ans = 75
1. Estimate the rhythm
2. What is the condition

- 1. sinus bradycardia
- HR = 300/8 = 37.5 < 50 bpm
What is the HR lead iv?

- 100
Cardiovascular Calculations

Define the ff terms and write equation(s) relating them:

1. Cardiac output (CO), stroke volume (SV), and heart rate (HR).
2. End-diastolic volume (EDV), End-systolic volume (ESV), stroke volume.
3. Pulse pressure (PP), Diastolic blood pressure, systolic blood pressure, Blood pressure.
4. Mean arterial blood pressure, diastolic pressure, Pulse pressure
5. Stroke volume, pulse pressure
6. Ejection fraction (EF), stroke volume, and end-diastolic volume.
7. Total Peripheral resistance, cardiac output, mean aortic (arterial pressure), and mean atrial pressure.
8. Total Peripheral resistance, cardiac output, and mean arterial pressure.
9. Percentage change in cardiac output, cardiac output at rest, and cardiac output after an exercise.

1. Cardiac output (CO) is the volume of blood ejected by the ventricle in a minute (ml/min).
 Stroke volume (SV) is the volume of blood ejected by the ventricle with each beat (ml/beat).
 Heart rate is the number of beats per minute (beats/min).
 \[\text{Cardiac output (CO)} = \text{stroke volume (SV)} \times \text{Heart rate (HR)} \]

2. End-diastolic volume (EDV) is the amount of blood collected in a ventricle during diastole or ventricular relaxation.
 End-systolic volume (ESV) = amount of blood remaining in a ventricle after contraction.
 \[\text{Stroke volume (SV)} = \text{EDV} - \text{ESV} \]

3. Pulse pressure (PP) is the difference between systolic pressure and the diastolic pressure
 systolic pressure is the highest value for arterial pressure in a cardiac cycle
 Diastolic pressure is the lowest value for arterial pressure in a cardiac cycle
 \[\text{Pulse pressure} = \text{systolic pressure} - \text{diastolic pressure} \]
 \[\text{Blood pressure} = \frac{\text{systolic pressure}}{\text{diastolic pressure}} \]

4. Mean arterial pressure = diastolic pressure + 1/3 pulse pressure

5. Stroke volume (SV) = 2 x pulse pressure
5. Ejection fraction (EF) = stroke volume (SV) / end-diastolic volume (EDV)
 where Ejection fraction = fraction of end diastolic volume ejected in one stroke

7. Total peripheral resistance (TPR) = (MAP – RAP) / CO
 where
 MAP = mean aortic (arterial) pressure (mmHg)
 RAP = mean right arterial pressure (mmHg)
 CO = Cardiac output (blood flow in of the left ventricle)

8. TPR = MAP/CO in a steady state.

9. Percentage change in cardiac output = 100% * (Post exercise Cardiac output – Cardiac output at rest) / (Cardiac output at rest)

Cardiovascular Calculations

1. Cardiac output (CO) is the volume of blood ejected by the ventricle in a minute (mL/min).
 Stroke volume (SV) is the volume of blood ejected by the ventricle with each beat (mL/beat).
 Heart rate is the number of beats per minute (beats/min).
 Cardiac output (CO) = stroke volume (SV) x Heart rate (HR)

2. End-diastolic volume (EDV) is the amount of blood collected in a ventricle during diastole or ventricular relaxation.
 Stroke volume (SV) = EDV – ESV

3. Pulse pressure (PP) is the difference between systolic pressure and the diastolic pressure.
 Systolic pressure is the highest value for arterial pressure in a cardiac cycle.
 Diastolic pressure is the lowest value for arterial pressure in a cardiac cycle.
 Pulse pressure = systolic pressure – diastolic pressure
 Blood pressure = systolic pressure / diastolic pressure

4. Mean arterial pressure = diastolic pressure + 1/3 pulse pressure

5. Stroke volume (SV) = 2 x pulse pressure

6. Ejection fraction (EF) = stroke volume (SV) / end-diastolic volume (EDV)
 where Ejection fraction = fraction of end diastolic volume ejected in one stroke

7. Total peripheral resistance (TPR) = (MAP – RAP) / CO
 where
 MAP = mean aortic (arterial) pressure (mmHg)
 RAP = mean right arterial pressure (mmHg)
 CO = Cardiac output (blood flow in of the left ventricle)

8. TPR = MAP/CO in a steady state.

9. Percentage change in cardiac output = 100% * (Post exercise Cardiac output – Cardiac output at rest) / (Cardiac output at rest)
• Given the ff data
 HR post exercise = 100bpm
 Resting Blood pressure = 100/60
 Resting pulse rate = 60pulses/45secs
 % change in CO = 400%
 Right atrial pressure = 3mmHg

Calculate the ff:
1. Resting HR
2. Resting PP
3. Resting stroke volume
4. Resting CO
5. Post CO just after exercise
6. Post stroke volume
7. Post PP
8. Mean arterial blood pressure at rest
9. Total peripheral resistance at rest

1. HR = PULSE RATE = 60 pulses / 45 s = 60 x 60 / 45 = 80bpm
 Ans: HR = 80bpm

2. PP = SBP – DBP
 100 – 60 = 40mmHg
 Ans: PP = 40mmHg

3. Rest SV = 2 x PP at rest = 2 x 40 = 80 ml/min
 Ans: Rest SV = 80ml/beat

4. Rest CO = Rest SV x HR at rest
 = 80 x 80 = 6400ml/beat = 6.4L/min
 Ans: CO at rest = 6400ml/min

5. Let y = Post CO
6. % change in CO = 100% x (Post CO - Rest CO) / (Rest CO)
 400% = 100% x (y - 6400) / (6400)
 y = 32000ml/min
 Ans: CO just after exercise = 3.2 L/min
6. Post SV = Post CO/ Post HR = 32000/100 = 320ml/beat
 Ans: Post SV = 320ml/beat

7. Post PP = Post SV /2 = 320/2 = 160mmHg
 Ans : Post PP = 160mmHg

8. Mean arterial pressure (MAP) at rest = DBP at rest + 1/3 PP at rest
 = 60 + (1/3) x 40 = 73.33mmHg
 Ans: MAP = 73.33mmHg

9. Total Peripheral resistance at rest (TPR) = (MAP – RAP) / (CO at rest)
 where RAP = Right atrial pressure
 MAP = mean arterial pressure
 = (73.33 - 3) / 6400
 = 0.011mmHg/ml/min
 Ans: TPR at rest = 0.011mmHg/ml/min

- The ff data were obtained from Mr. K
 Stroke volume is 70ml/beat;
 Systolic blood pressure at rest is 120mmHg;
 Cardiac output just after exercise is 6 times his cardiac output at rest.
 Pulse rate = 30 pulses in 20 seconds.
 Calculate the ff:
 1). HR at rest 2). CO at rest
 3). CO just after the exercise
 4). % change in CO due to the exercise
 5). PP at rest 6). Mr. K’s blood pressure at rest
 7). Mean arterial blood pressure (MAP) at rest
• Answers
1. HR = 30 pulses/20s = (30 x 60/20) beat/min = 90 bpm
 Ans: HR = 90 bpm
2. CO at rest = (SV at rest) x HR = 70 x 90 = 63000 ml/min
 Ans: CO at rest = 6.3 L/min
3. CO post ex. = 6 times CO at rest
 = 6 x 6300 = 37800 ml/min
 Ans: CO post ex. = 37.8 L/min
4. % change in CO = 100% x (Post CO – CO at rest)/ (CO at rest)
 = 100% x (37800 – 6300)/6300
 = 500%
 Ans: % change in CO = 500%
5. PP at rest = (SV at rest)/2
 = 70/2 = 35 mmHg
 Ans: PP at rest = 35 mmHg

CV
6. Blood pressure (BP) = Systolic pressure (SBP)/diastolic pressure (DBP)
 but Pulse Pressure (PP) = SBP – DBP
 35 = 120 – DBP
 DBP = 120 - 35 = 85 mmHg
 Therefore BP = 120/85
 Ans: Blood pressure at rest = 120/85
7. Mean arterial pressure at rest (MAP) = DBP + (1/3) x PP
 = 85 + (1/3) x 35 = 96.67 mmHg
 Ans: Mean arterial pressure at rest = 96.67 mmHg
The following data were collected from Mr X.

Blood pressure = 120/60
Heart rate = 60bpm
Cardiac output post exercise is six times cardiac output during resting.
Calculate the cardiac output after the exercise.

Solution

Given BP = 120/60, HR at rest = 60bpm

CO post = 6 x CO at rest
But CO at rest = (SV at rest) x HR at rest
= (2 x PP) x 60
= [2 x (SBP- DBP)] x 60
= [2 x (120-60)] x 60
= 7200 = 7.2L/min

Therefore CO post = 6 x CO at rest
= 6 x 7.2L = 43.2L/min

Ans: Cardiac output (CO) post ex. = 43.2L/min
The ff data were collected from Mr. Y:

- The amount of blood remaining in the left ventricle after contraction was 60ml.
- The blood pressure was 140/90.
- Heart rate was 45 beats in 45 seconds.

Calculate the ff:
1. Stroke volume
2. Cardiac output
3. Mean arterial blood pressure
4. End diastolic volume
5. Ejection fraction

Answers

1. Given: ESV = 60ml; BP = 140/90; HR = 45 pulses/45s.

 \[\text{HR} = 45 \times \frac{60}{45} = 60 \text{bpm} \]

 Required to calc.
 \[SV = 2 \times PP \quad (1) \]

 But \[PP = \text{SBP-DBP} = 140 - 90 = 50 \text{mmHg} \quad (2) \]

 Substitute (2) into (1),
 \[SV = 2 \times 50 = 100 \text{ml/beat} \]

2. \[\text{CO} = SV \times \text{HR} \]
 \[= 100 \times 60 = 6000 \text{ml/min} \]

 Ans: cardiac output = 6L/min

3. Mean arterial pressure (MAP) = \[\text{DBP} + \frac{1}{3} \times \text{PP} \]
 \[= 90 + \left(\frac{1}{3} \times 50 \right) = 106.67 \text{mmHg} \]

 Ans: MAP = 106.67 mmHg

4. \[\text{EDV} =? \]

 from the formula, \[SV = \text{EDV} - \text{ESV} \]
 \[\text{EDV} = SV + \text{ESV} \]
 \[\text{EDV} = 100 + 60 = 160 \text{ml} \]

 Ans: End diastolic volume = 160ml
The ff data were collected in a case:
Systolic pressure (aorta) = 124mmHg
Diastolic pressure (aorta) = 82mmHg
R-R interval is between R waves on EKG = 800msec
Left ventricular end-diastolic volume = 140ml
Left ventricular end-systolic volume = 70ml
Mean pulmonary arterial pressure = 15mmHg
Right atrial pressure = 2mmHg
Left atrial pressure = 5mmHg
O2 consumption (whole body) = 20ml/min
O2 content of systemic arterial blood = 0.20ml O2/ml blood
O2 content of pulmonary arterial blood = 0.152mlO2/ml blood
Calculate the ff:
1. The mean arterial pressure
2. The stroke volume, cardiac output, and ejection fraction of left ventricle.
3. Calculate the cardiac output using the Fick principle
4. What is the total peripheral resistance
5. What is the peripheral vascular resistance

Answers
1. 96mmHg
2. SV = 70ml
 HR = 1/cycle length = 1/800msec = 1/0.8sec = 75beats/min
 CO = 70 x 75bpm = 520ml/min
 E.F = SV/EDV = 70/140 = 0.5 or 50%
3. O2 consumption = cardiac output x (O2) pv – CO x (O2)p-artery
 CO = O2 consumption / (O2)pv - (O2)p-artery
 = 250/ (0.2-0.152)
 = 5208
4. TPR = (mean arterial pressure – right atrial pressure) / average CO
 = (96mmHg-2mmHg) / 5229
 = 0.018mmHg/ml/min
5. Peripheral vasc resistance = (mean pulmonary pressure – left atrial pressure) / CO
 = (15mmHg – 5mmHg) / 5229
 = 0.0019mmHg/ml/min