

HEMOSTASIS & THROMBOSIS

- Platelets
- Coagulation Cascade
- Regulation of Coagulation
- Disseminated Intravascular Coagulation

HEMOSTATIC DISORDERS Suspicions

- Spontaneous bleeding
- Prolonged or excessive bleeding after procedures or trauma
- Simultaneous bleeding from multiple sites

HEMOSTASIS Primary vs. Secondary vs. Tertiary

- Primary Hemostasis
 - Platelet Plug Formation
 - Dependent on normal platelet number & function
 - Initial Manifestation of Clot Formation
 - Secondary Hemostasis
 - Activation of Clotting Cascade ⊠ Deposition & Stabilization of Fibrin
 - Tertiary Hemostasis
 - Dissolution of Fibrin Clot
 - Dependent on Plasminogen Activation

Virchow's Triad

Changes in blood coagulability Platelets, Coagulation Factors & Inhibitors, Fibrinolysis

Changes in vessel wall Endothelial changes due to inflammation or atherogenesis

Changes in blood flow

Rheology in vessels

Coagulation Phase 2: Pathway to Thrombin

Prothrombin activator catalyzes the transformation of prothrombin to the active enzyme thrombin

Coagulation Phase 3: Common Pathways to the Fibrin Mesh

- Thrombin catalyzes the polymerization of fibrinogen into fibrin
- Insoluble fibrin strands form the structural basis of a clot
- □ Fibrin causes plasma to become a gel-like trap
- Fibrin in the presence of calcium ions activates factor XIII that:
 - Cross-links fibrin
 - Strengthens and stabilizes the clot

- Thrombin not absorbed to fibrin is inactivated by antithrombin III
- Heparin, another anticoagulant, also inhibits thrombin activity

Tests for Primary Hemostasis

Bleeding Time

- Assesses all components of Virchow's triad
- in vivo test performed directly on patient
- Has fallen into disrepute and replaced by instruments that perform "in

vitro" bleeding times

Platelet Aggregation studies

- Measure ability of platelets to aggregate, in vitro, when subjected to various stimulators (agonists)
- Predominantly assesses function of platelet glycoprotein IIb/IIIa receptor

Von Willebrand Factor (VWF) assays

- Measure amount and function of VWF, a protein that works with platelets so that they adhere to site of injury
- Assesses function of VWF ligand in its interaction with platelet glycoprotein Ib receptor

CLOTED Time Frame for Hemostasis					
Platelets	Coagulation Factors	Fibrinolytic Proteins			
<u>Primary</u> <u>Hemostasis</u>	<u>Secondary</u> <u>Hemostasis</u>	<u>Fibrinolysis</u>			
 Vessel constriction occurs immediately 	 Activation of coagulation factors occurs in 	 Activation of fibrinolytic proteins happens 			
 Platelet adhesion occurs in seconds 	seconds	immediately			
 Platelet aggregation takes minutes 	 Fibrin forms in minutes 	 Dissolving the thrombus requires hours 			

Blood Transfusions Whole blood transfusions are used: When blood loss is substantial In treating thrombocytopenia Packed red cells (cells with plasma removed) are used to treat anemia

Human Blood Groups

RBC membranes have glycoprotein antigens on their external surfaces

□ These antigens are:

- Unique to the individual
- Recognized as foreign if transfused into another individual
- Promoters of agglutination and are referred to as agglutinogens
- Presence or absence of these antigens is used to classify blood groups

AGGLUTINOGENS

Also called antigens.

- These agglutinogens are present on the outer surface of the Erythrocyte membranes.
- They are antigenic and have epitopes or antigenic determinants, which are glycoproteins.
- In ABO groups, three types of agglutinogens can be present.

Some individuals will have Erythrocytes with an agglutinogen called as "A".

Others have one called "B"

The third type of agglutinogen is non antigenic and it is called "H" H doesn't cause production of antibodies. So those having H antigen are called O group individuals.

A AND B, INDIVIDUALS

- Those having the A agglutinogen on their erythrocytes are called A blood group people.
- Those having the B agglutinogen are called the B blood group people.
- •Some have both the A and B agglutinogens on their erythrocytes and they are called AB type.
- •Others have neither A nor B agglutinogens. They have the non antigenic H on their RBCs and are called O group people.

AGGLUTININS

- The antibodies to the agglutinogens are called Agglutinins.
- These are present naturally in ABO groups.
- They are always present in the plasma of the individual.
- There are two types of agglutinins in the ABO blood system:
 - Anti A or α: Alpha
 - Anti B or β: Beta

•The A group people have the Beta or anti B agglutinin in their plasma.

•Similarly the B group people have the Alpha or Anti-A agglutinin in their plasma.

•The AB group of people have no agglutinins in their plasma.

•The O group people have both Alpha and Beta types of agglutinins in their plasma

ABO BLOOD GROUPS

Blood Group	Antigens on RBCs	Antibodies in Serum	Genotypes	
A	Α	Anti-B	AA or AO	
В	В	Anti-A	BB or BO	
AB	A and B	Neither	AB	
о	Neither	Anti-A and Anti-B	00	

Erythrocytes	Antigen A	Antigen B	Antigens A and B	Neither antigen A nor B
Plasma	Anti-B antibodies	Anti-A antibodies	Neither anti-A nor anti-B antibodies	Both anti-A and anti-B antibodies
Blood type	Type A Erythrocytes with type A surface antigens and plasma with anti-B antibodies	Type B Erythrocytes with type B surface antigens and plasma with anti-A antibodies	Type AB Erythrocytes with both type A and type B surface antigens, and plasma with neither anti-A nor anti-B antibodies	Type O Erythrocytes with neither type A nor type B surface antigens, but plasma with both anti-A and anti-B antibodies

TABLE 17.4 ABO Blood Groups						- 575		S. Steal	Nage Contraction
BLOOD GROUP		UENCY (% BLACK	U.S. POP ASIAN	ULATION) NATIVE AMERICAN	RBC ANTIGENS (AGGLUTINOC	GENS) IL	LUSTRATION	PLASMA ANTIBODIES (AGGLUTININS)	BLOOD THAT CAN BE RECEIVED
AB	4	4	5	<1	A B	A	В	None	A, B, AB, O (Universal recipient)
В	11	20	27	4	В	Anti-A	B	Anti-A (a)	В, О
A	40	27	28	16	A	Anti-B —		Anti-B (b)	Α, Ο
0	45	49	40	79		Anti-B Anti-A		Anti-A (a) Anti-B (b)	O (Universal donor)

HEMAGGLUTINATION

- Agglutination or clumping is seen whenever the respective agglutinogens and agglutinins are mixed.
- **Agglutinogen A** + Agglutinin Alpha = Agglutination.
- Agglutinogen B + Agglutinin Beta = Agglutination.
- Both agglutinogens + Both antisera = Agglutination.
- No agglutinogens = No agglutination.

Source: Lichtman MA, Shafer MS, Felgar RE, Wang N: Lichtman's Atlas of Hematology: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Blood type		Antibodies made by	Reaction to added antibodies		
of cells	Genotype	body	Anti-A	Anti-B	
А	I ^A I ^A or I ^A I ^O	Anti-B			
В	I ^B I ^B or I ^B I ^O	Anti-A			
AB	$I^{\scriptscriptstyle \mathrm{A}}I^{\scriptscriptstyle \mathrm{B}}$	Neither anti-A nor anti-B	Sacht 1 Rain		
0	IoIo	Both anti-A and anti-B			

Rh TYPING: INTRODUCTION

- □ It is the second most important typing of blood.
- These blood groups were originally discovered in Rhesus monkeys
- □ Rh is another type of agglutinogen.
- It is also present on the outer surface of the erythrocytes.

Rh Blood Groups

- There are eight different Rh agglutinogens, three of which (C, D, and E) are common
- $\hfill\square$ Presence of the Rh agglutinogens on RBCs is indicated as Rh^+
- Anti-Rh antibodies are not spontaneously formed in Rh⁻ individuals
- However, if an Rh⁻ individual receives Rh⁺ blood, anti-Rh antibodies form
- A second exposure to Rh⁺ blood will result in a typical transfusion reaction

cytotoxicity disorder.

Exposure to Antigens: How?

- In case of an Rh-ve woman, if she is married to an Rh+ve man, she can conceive an Rh+ve child.
- In this case, the D antigen present on the erythrocytes of the fetus does not go into the maternal circulation throughout the pregnancy (due to the Feto-Placental barrier)

During the delivery of the baby, some blood of the fetus spills over into the maternal circulation.

□The maternal circulation is exposed to the D antigens from the fetal erythrocytes.

The maternal circulation slowly develops Anti D antibodies.

The first child is however spared.

- Transfusion reactions occur when mismatched blood is infused
- Donor's cells are attacked by the recipient's plasma agglutinins causing:
 - Diminished oxygen-carrying capacity
 - Clumped cells that impede blood flow
 - Ruptured RBCs that release free hemoglobin into the bloodstream

Circulating hemoglobin precipitates in the kidneys and causes renal failure

Blood Typing

- When serum containing anti-A or anti-B agglutinins is added to blood, agglutination will occur between the agglutinin and the corresponding agglutinogens
- Positive reactions indicate agglutination

Blood Typing

Blood type being tested	RBC agglutinogens	Serum Reaction	
		Anti-A	Anti-B
AB	A and B	+	+
В	В	_	+
А	А	+	_
0	None	_	_

- The properties of blood change as we grow older. It is thought that these changes might contribute to the increased incident of clot formation and atherosclerosis in older people. Some of the most prominent findings on these changes include:
- Rise in fibrinogen
- Rise in blood viscosity
- Rise in plasma viscosity
- Increased red blood cell rigidity
- Increased formation of fibrin degradation products
- Earlier activation of the coagulation system