Renal physiology

D.HAMMOUDI.MD

Functions

- Regulating blood ionic composition
- Regulating blood pH
- Regulating blood volume
- Regulating blood pressure
- Produce calcitrol and erythropoietin
- Regulating blood glucose
- Excreting wastes

Urinary excretion rate = Filtration rate - Reabsorption rate + Secretion rate

Fluid compartments

ECF: Î NaCl, ↓ K⁺. ICF: ↑K⁺, ↓ NaCl HIKIN': HIgh K INtracellular). TBW - ECF = ICF.ECF - PV = interstitial volume. 60-40-20 rule (% of body weight): 60% total body water 40% ICF 20% ECF Plasma volume measured by radiolabeled albumin. Extracellular volume measured by inulin. Osmolarity = 290 mOsm.

Total body water 40 L, 60% body w	volume = eight	
	Extracellular fluid volume = 15 L, 20% body weight	
Intracellular fluid volume = 25 L, 40% body weight	Interstitial fluid volume = 12 L, 80% of ECF	Plasma volume = 3 L, 20% of ECF

Fluid Balance

FLUID COMPARTMENT COMPOSITION

Water Steady State

Amount Ingested = Amount Eliminated

- Pathological losses
 - √vascular bleeding (H20, Na+)
 - √vomiting(H20, H+)
 - √diarrhea (H20, HCO3-).

OSMOLARITY, HYDROSTATIC, ONCOTIC THOSE WHO DECIDE WHICH WAY FLUIDS GO

• 2 X NA + = INDEX OF EC OSMOLARITY

OSMOLALITY=
2[NA +K] + BUN/2.8 GLUCOSE/18

WHEN ECF OSMOLARITY INCREASES CELLS SHRINK WHEN ECF OSMOLARITY DECREASES CELLS SWELL

IN A NORMAL WORLD [H2O] INTRACELLULAR = EC [H2O] CAN KILL GIVING IV WATER CELL BURST NO NA IN WATER.

Body Fluid Compartments

- Total body water 50-60 % of body weight
 decrease with age, gender and obesity
- Intracellular water 40% of body weight
 - 75 trillion cells
 - Similar composition in different species
- Extracellular water 20% of body weight
 - % is important in fluid therapy
 - Transcellular accounts for ~ 1-2 liters

• BODY WATER DEFICIT = DESIRED TBW - CURRENT TBW

• DESIRED TBW=<u>measured serum Na⁺ x current TBW</u> NORMAL SERUM Na⁺

• CURRENT TBW = 0.6 X CURRENT BODY WEIGHT [KG]

Serum Values of Electrolytes

Concentration

Cations (+) Sodium Potassium Calcium Magnesium Anions (-) Chloride **CO2** Phosphate HCO₃

135 – 145 mEq/L 3.5 - 4.5 mEq/L 9-10.5 mg/dL 1.5 - 2.5 mEq/L

95 – 107 mEq/L 24 – 30 mEq/L 2.5 - 4.5 mEq/L 22 – 26 mEq/L

Daily Requirements for Electrolytes

Sodium: 1-2 mEq/kg/d Potassium: 0.5-1 mEq/kg/d Calcium: 800 - 1200 mg/d Magnesium: 300 - 400 mg/d Phosphorus: 800 - 1200 mg/d

Function	Mechanism	Affected Elements
•Waste Excretion	Glomerular filtration	Nitrogenous products of protein metabolism (urea, Cr)
	Tubular secretion	Organic acids (urate) Organic bases (Cr)
	Tubular catabolism	Drugs (antibiotics, diuretics) Peptide hormones (most pituitary hormones, insulin, glucagon)
•Electrolyte Balance	Tubular NaCl absorption	Volume status, osmolar balance
	Tubular water reabsorption	Osmolar balance
	Tubular K secretion	Potassium concentration
	Tubular H secretion	Acid-base balance
	HCO ₃ synthesis and reabsorption	
	Tubular Ca, Mg, PO ₄ transport	Ca, Mg, PO ₄ homeostasis

 Hormonal Synthesis 	Erythropoietin production (cortex)	Red blood cell mass
	Vitamin D activation	Calcium homeostasis
	Renin production (JG apparatus)	Vascular resistance, aldosterone secretion
 Blood Pressure Regulation 	Altered sodium excretion	ECF volume
	Renin production	Vascular resistance
•Glucose Homeostasis	Gluconeogenesis (from lactate, pyruvate, amino acids)	Glucose supply maintained in prolonged starvation

Osmolality and Osmotic Pressure

- Fluid concentration (osmolality) create osmotic pressure (pull)
- Normal
 - Serum osmolality 275 to 295 mOsm/L
 - Urine osmolality

Osmotic / oncotic pressure

 H_2O

Colloidal Osmotic Pressure

Na

Diffusion allows Na to move freely between intravascular and interstial spaces

Intracellular

Interstitial

Intravascular

Body Systems Controlling Fluid and Electrolyte Balance

Renal

Endocrine

 ADH
 Aldosterone

Gastrointestinal

Components of Glomerular Filtration Barrier

Capillary endothelial cells
 Glomerular basement membrane
 Visceral epithelial cells (podocytes)

Filtration is based on charge and pore size.

Urine production maintains homeostasis

- Regulating blood volume and composition
- Excreting waste products
 - Urea
 - Creatinine
 - Uric acid

Basic processes of urine formation

- Filtration
 - Blood pressure
 - Water and solutes across glomerular capillaries
- Reabsorption
 - The removal of water and solutes from the filtrate

Secretion

Transport of solutes from the peritubular fluid into the tubular fluid

Carrier Mediated Transport

- Filtration in the kidneys modified by carrier mediated transport
 - Facilitated diffusion
 - Active transport
 - Cotransport
 - Countertransport
- Carrier proteins have a transport maximum (T_m)
 - Determines renal threshold

Reabsorption and secretion

- Accomplished via diffusion, osmosis, and carrier-mediated transport
- T_m determines renal threshold for reabsorption of substances in tubular fluid

Urine Concentration

- <u>Isothenuric-</u> Urine concentration equal to blood plasma concentration
- Concentrated urine concentration greater than that of the blood plasma
- <u>Dilute</u> urine less concentrated than the blood plasma

Urine production maintains homeostasis

Regulating blood volume and composition
 Excreting waste products

 Urea
 Creatinine
 Uric acid

<u>Secretion of hormones</u>
 <u>Secretion of erythropoietin</u>, which regulates red blood cell production in the bone marrow.

•Secretion of *renin*, which is a key part of the renin-angiotensin-aldosterone system. (Technically, though, renin is not a hormone, it is an enzyme.)

Secretion of the active form of vitamin
 D (calcitriol) and prostaglandins.

aldosterone, which stimulates active sodium reabsorption (and water as a result)

antidiuretic hormone, which stimulates passive water reabsorption

Both hormones exert their effects principally on the collecting ducts.

Antidiuretic hormone and the mineralcorticoids

Synthesis of ADH

- ADH synthesized in the cell bodies of hypothalamic neurons in the supraoptic nucleus
- ADH is stored in the neurohypophysis (posterior pituitary)—forms the most readily released ADH pool

ADH is also known as arginine vasopressin (AVP = ADH) because of its vasopressive activity, but its major effect is on the kidney in preventing water loss.

ADH

Regulated by osmotic and volume stimuli

Water deprivation increases osmolality of plasma which activates hypothalmic osmoreceptors to stimulate ADH release

- Glomerular filtrate drains into Bowman's space, and then into proximal convoluted tubule.
- Endothelium has pores to allow small molecules through.
- Podocytes have negative charge. This and the basement membrane stops proteins getting through into tubular fluid.
- <u>Macula densa senses GFR</u> by [Na⁺]
- Juxtaglomerular (JG) apparatus includes JG cells that secrete renin.
- JGA helps regulate renal blood flow, GFR and also indirectly, modulates Na⁺ balance and systemic BP

Glomerulus and Boynan's

(a) Mechanism of dehydration

(b) Mechanism of hypotonic hydration

Figure 26.7

Effective Renal Plasma Flow (FIT-RPF)

Changes in glomerular dynamics

Effect Afferent arteriole constriction Efferent arteriole constriction ↑ plasma protein concentration ↓ plasma protein concentration Constriction of ureter

The Response to a Reduction in the GFR

Dynamics of Glomerular Filtration

- Forces Opposing Filtration (tends to keep fluid in the glomerulus)
 - tubular pressure
 - 18mmHg back pressure
 - osmotic pressure of plasma proteins (OPPP)
 - 32mmHg
 - higher than systemic
 - concentration of plasma proteins

Dynamics of Glomerular Filtration

Effective Filtration Pressure

EFP= CP - (OPPP + Tubular Pressure)

- driving force that pushes fluid

Inulin is such a substance, thus we can measure what we call the clearance of inulin, C_{in}, and for this "special" substance

$$C_{in} = GFR = [U]_{in} \times V$$
 (units are ml/min)
[P]_{in}

We now have a standard in inulin clearance. If we measure the clearance of any substance, x, and compare it to C_{in}, if

C_x > C_{in}, substance must be added to the tubule (i.e., secreted)

 $C_x < C_{in}$, substance must be removed from tubule (i.e., absorbed)

$$GFR = \frac{5mg / ml \times 5ml / \min}{0.2mg / ml}$$

 If the amount excreted is less than the filtered amount= filtered and reabsorbed

 If in excess of what has been filtered = filtration and secretion

Factors Affecting the GFR

- Changes in glomerular capillary hydrostatic pressure
 - systemic blood pressure
 - afferent or efferent arteriolar constriction
- Changes in hydrostatic pressure in bowmans capsule
 - ureteral obstruction
 - edema of kidney inside tight renal capsule
- Changes in oncotic pressure of plasma proteins
 - dehydration
 - hypoproteinemia
- Increased permeability of glomerular filter
 - various disease
- Decrease in total area of glomerular capillary bed
 - disease which destroy glomeruli with or without destruction of tubules
 - partial nephrectomy

The three basic renal processes

- Glomerular filtration
- Tubular reabsorption
- Tubular secretion
- GFR is very high: ~180l/day. Lots of opportunity to precisely regulate ECF composition and get rid of unwanted substances
- N.B. it is the ECF that is being regulated, NOT the urine.

Glomerular filtration

FORCES AFFECTING ULTRAFILTRATION Δ. Efferent arteriole Afferen arteriole Bowman's PGC πGC space Two forces filter Two forces oppose fluid out. ultrafiltration. PBS π_{BS} PGC = Glomerular capillary hydrostatic pressure π_{BS} = Bowman's space oncotic pressure P_{BS} = Bowman's space hydrostatic pressure π_{GC} = Glomerular capillary oncotic pressure

© Elsevier Ltd. Boron & Boulpaep: Medical Physiology, Updated Edition www.studentconsult.com

GFR depends on diameters of afferent and efferent arterioles

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 25.14

Key:

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 25.15

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 25.15a

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings. Figu

Figure 25.15b

Renin-angiotensin-aldosterone system

Renin-angiotensin-aldosterone system

Hormones acting on kidney

Atrial natriuretic peptide (ANP) secreted in response to 1 atrial pressure. Causes 1 GFR and 1 Na⁺ filtration with no compensatory Na⁺ reabsorption in distal nephron to lower volume. Net effect: Na⁺ loss and volume loss.

JGA

Parathyroid hormone (PTH): Secreted in response to \downarrow plasma [Ca²⁺], \uparrow plasma [PO₄^{3⁻}], or \downarrow plasma 1.25 (OH)₂ vitamin D. Causes \uparrow [Ca²⁺] reabsorption (DCT), \downarrow PO₄^{3⁻} reabsorption (PCT), 1.25 (OH)₂ vitamin D production $\rightarrow \uparrow$ Ca²⁺ and PO₄^{3⁻} absorption from gut. Renin (response to blood volume) Angiotensinogen AT I ACE (lung) Angiotensin II (AT II) synthesized in response to BP. Causes efferent arteriole

synthesized in response to \downarrow BP. Causes efferent arteriole constriction \rightarrow \uparrow GFR and \uparrow FF but with compensatory Na⁺ reabsorption in proximal and distal nephron. Net effect: preservation of renal function in low-volume state (\uparrow FF) with simultaneous Na⁺ reabsorption (both proximal and distal) to \downarrow additional volume loss. ADH (vasopressin) secreted in response to \uparrow plasma osmolarity and \downarrow blood volume. Binds to receptors on principal cells, causing \uparrow number of water channels and \uparrow H₂O reabsorption.

Aldosterone-

secreted in response to 1 blood volume (via AT II) and 1 plasma [K+]; causes 1 Na+ reabsorption, 1 indirect K+ secretion, 1 H+ secretion.

- (+) Excitatory synapse
- (-) Inhibitory synapse
 - Visceral afferent
 - Sympathetic
 - Somatic efferent
 - Parasympathetic
 - Interneuron

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 25.20b

Kidney stones	Can lead to severe complications, such as hydronephrosis and pyelonephritis. Treat and prevent by encouraging fluid intake.	
Calcium	Most common kidney stones (75–85%). Calcium oxalate (see Image 88), calcium phosphate, or both. Conditions that cause hypercalcemia (cancer, ↑ PTH, ↑ vitamin D, milk-alkali syndrome) can lead to hypercalciuria and stones. Tend to recur.	Radiopaque. Oxalate crystals can result from ethylene glycol (antifreeze) or vitamin C abuse.
Ammonium magnesium phosphate (struvite)	2nd most common kidney stone. Caused by infection with urcase-positive bugs (<i>Proteus vulgaris</i> , <i>Staphylococcus</i> , <i>Klebsiella</i>). Can form staghorn calculi that can be a nidus for UTIs.	Radiopaque or radiolucent. Worsened by alkaluria.
Uric acid	Strong association with hyperuricemia (e.g., gout). Often seen as a result of diseases with \uparrow cell turnover, such as leukemia and myeloproliferative disorders.	RadiolUcent.
Cystine	Most often 2° to cystinuria. Hexagonal shape. Rarely, may form cystine staghorn calculi.	Faintly radiopaque. Treat with alkalinization of urine.

TABLE 26.1 Causes and Consequences of Electrolyte Imbalances

	ABNORMALITY		
ION	(SERUM VALUE)	POSSIBLE CAUSES	CONSEQUENCES
Sodium	Hypernatremia (Na ⁺ excess: >145 mEq/L)	Dehydration; uncommon in healthy individuals; may occur in infants or the confused aged (individuals unable to indicate thirst) or may be a result of excessive intravenous NaCl administration	Thirst: CNS dehydration leads to confusion and lethargy progressing to coma; increased neuromuscular irritability evidenced by twitching and convulsions
	Hyponatremia (Na ⁺ deficit: <135 mEq/L)	Solute loss, water retention, or both (e.g., excessive Na ⁺ loss through vomiting, diarrhea, burned skin, tubal drainage of stomach, and as a result of excessive use of diuretics); deficiency of aldosterone (Addison's disease); renal disease; excess ADH release; excess H ₂ O ingestion	Most common signs are those of neurologic dysfunction due to brain swelling. If sodium amounts are actually normal but water is excessive, the symptoms are the same as those of water excess: mental confusion; giddiness; coma if development occurs slowly; muscular twitching, irritability, and convulsions if the condition develops rapidly. In hyponatremia accompanied by water loss, the main signs are decreased blood volume and blood pressure (circulatory shock)
Potassium	Hyperkalemia (K ⁺ excess: >5.5 mEq/L)	Renal failure; deficit of aldosterone; rapid intravenous infusion of KCI; burns or severe tissue injuries which cause K ⁺ to leave cells	Nausea, vomiting, diarrhea; bradycardia; cardiac arrhythmias, depression, and arrest; skeletal muscle weakness; flaccid paralysis
	Hypokalemia (K ⁺ deficit: <3.5 mEq/L)	Gastrointestinal tract disturbances (vomiting, diarrhea), gastrointestinal suction; Cushing's disease; inadequate dietary intake (starvation); hyperaldosteronism; diuretic therapy	Cardiac arrhythmias, flattened T wave; muscular weakness; metabolic alkalosis; mental confusion; nausea; vomiting
Phosphate	Hyperphosphatemia (HPO4 ²⁻ excess: >2.9 mEq/L)	Decreased urinary loss due to renal failure; hypoparathyroidism; major tissue trauma; increased intestinal absorption	Clinical symptoms arise because of reciprocal changes in Ca ²⁺ levels rather than directly from changes in plasma phosphate
	Hypophosphatemia (HPO4 ²⁻ deficit: <1.6 mEg/L)	Decreased intestinal absorption; increased urinary output; hyperparathyroidism	concentrations
TABLE 26.1 Causes and Consequences of Electrolyte Imbalances (continued)

ION	ABNORMALITY (SERUM VALUE)	POSSIBLE CAUSES	CONSEQUENCES
Chloride	Hyperchloremia (Cl [–] excess: >105 mEq/L)	Dehydration; increased retention or intake; metabolic acidosis; hyperparathyroidism	No direct clinical symptoms; symptoms generally associated with the underlying cause, which is often related to pH abnormalities
	Hypochloremia (Cl [–] deficit: <95 mEq/L)	Metabolic alkalosis (e.g., due to vomiting or excessive ingestion of alkaline substances); aldosterone deficiency	
Calcium	Hypercalcemia (Ca ²⁺ excess: >5.2 mEq/L or 10.5 mg%)*	Hyperparathyroidism; excessive vitamin D; prolonged immobilization; renal disease (decreased excretion); malignancy	Decreased neuromuscular excitability leading to cardiac arrhythmias and arrest, skeletal muscle weakness, confusion, stupor, and coma; kidney stones; nausea and vomiting
	Hypocalcemia (Ca ²⁺ deficit: <4.5 mEq/L or 9 mg%)*	Burns (calcium trapped in damaged tissues); hypoparathyroidism; vitamin D deficiency; renal tubular disease; renal failure; hyperphosphatemia; diarrhea; alkalosis	Increased neuromuscular excitability leading to tingling of fingers, tremors, skeletal muscle cramps, tetany, convulsions; depressed excitability of the heart; osteomalacia; fractures
Magnesium	Hypermagnesemia (Mg ²⁺ excess: >2.2 mEq/L)	Rare; occurs in renal failure when Mg is not excreted normally; excessive ingestion of Mg ²⁺ -containing antacids	Lethargy; impaired CNS functioning, coma, respiratory depression; cardiac arrest
	Hypomagnesemia (Mg ²⁺ deficit: <1.4 mEq/L)	Alcoholism; loss of intestinal contents, severe malnutrition; diuretic therapy	Tremors, increased neuromuscular excitability, tetany, convulsions

*1 mg% = 1 mg/100 ml

TABLE 26.2 Causes and Consequences of Acid-Base Imbalances

CONDITION

AND HALLMARK

POSSIBLE CAUSES; COMMENTS

METABOLIC ACIDOSIS

uncompensated (uncorrected) (HCO ₃ ⁻ <22 mEq/L;	Severe diarrhea: bicarbonate-rich intestinal (and pancreatic) secretions rushed through digestive tract before their solutes can be reabsorbed; bicarbonate ions are replaced by renal mechanisms that generate new bicarbonate ions		
pH <7.35)	Renal disease: failure of kidneys to rid body of acids formed by normal metabolic processes		
	Untreated diabetes mellitus: lack of insulin or inability of tissue cells to respond to insulin, resulting in inability to use glucose; fats are used as primary energy fuel, and ketoacidosis occurs		
	Starvation: lack of dietary nutrients for cellular fuels; body proteins and fat reserves are used for energy—both yield acidic metabolites as they are broken down for energy		
	Excess alcohol ingestion: results in excess acids in blood		
	High ECF potassium concentrations: potassium ions compete with H ⁺ for secretion in renal tubules; when ECF levels of K ⁺ are high, H ⁺ secretion is inhibited		
METABOLIC ALKALOSIS			
uncompensated (HCO ₃ ⁻ >26 mEq/L;	Vomiting or gastric suctioning: loss of stomach HCl requires that H^+ be withdrawn from blood to replace stomach acid; thus H^+ decreases and HCO_3^- increases proportionately		
pH >7.45)	Selected diuretics: cause K ⁺ depletion and H ₂ O loss. Low K ⁺ directly stimulates the tubule cells to secrete H ⁺ . Reduced blood volume elicits the renin-angiotensin mechanism, which stimulates Na ⁺ reabsorption and H ⁺ secretion.		
	Ingestion of excessive sodium bicarbonate (antacid): bicarbonate moves easily into ECF, where it enhances natural alkaline reserve		
	Excess aldosterone (e.g., adrenal tumors): promotes excessive reabsorption of Na ⁺ , which pulls		

increased amount of H^+ into urine. Hypovolemia promotes the same relative effect because aldosterone secretion is increased to enhance Na^+ (and H_2O) reabsorption.

Table 26.2.1

TABLE 26.2 Causes and Consequences of Acid-Base Imbalances (continued)

CONDITION

AND HALLMARK

POSSIBLE CAUSES; COMMENTS

RESPIRATORY ACIDOSIS (HYPOVENTILATION)

uncompensated (>45 mm Hg; pH <7.35) **Impaired lung function** (e.g., in chronic bronchitis, cystic fibrosis, emphysema): impaired gas exchange or alveolar PCO₂ ventilation

Impaired ventilatory movement: paralysis of respiratory muscles, chest injury, extreme obesity

Narcotic or barbiturate overdose or injury to brain stem: depression of respiratory centers, resulting in hypoventilation and respiratory arrest

RESPIRATORY ALKALOSIS (HYPERVENTILATION)

uncompensated	Strong emotions: pain, anxiety, fear, panic attack
(P _{CO₂} <35 mm Hg; pH >7.45)	Hypoxia: asthma, pneumonia, high altitude; represents effort to raise P_{O_2} at the expense of excessive CO_2 excretion
	Brain tumor or injury: abnormality of respiratory controls