

Hemostasis and coagulation

Danil Hammoudi.MD UPDATE 2025

Figure 18.4

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Megakaryocyte

(b) Platelets forming in blood vessel

(a) ©McGraw-Hill Education/Al Telser

- Hemostasis is the physiological process that prevents and stops bleeding.
- It involves a **complex interplay between**:
 - The vascular endothelium,
 Platelets
 Coagulation cascade.
- Maintaining a balance
 - Coagulation
 - Fibrinolysis

Hypocoagulation: excessive bleeding (inherited or acquired)

Hypercoagulation (thrombosis) inadequate activation of the fibrinolytic system

HEMOSTASIS & THROMBOSIS

- Platelets
- Coagulation Cascade
- Regulation of Coagulation
- Disseminated Intravascular Coagulation

HEMOSTATIC DISORDERS Suspicions

- Spontaneous bleeding
- Prolonged or excessive bleeding after procedures or trauma
- Simultaneous bleeding from multiple sites

HEMOSTASIS Primary vs. Secondary vs. Tertiary

- Primary Hemostasis
 - Platelet Plug Formation
 - Dependent on normal platelet number & function
 - Initial Manifestation of Clot Formation

Secondary Hemostasis

 Activation of Clotting Cascade ⊠ Deposition & Stabilization of Fibrin

Tertiary Hemostasis

- Dissolution of Fibrin Clot
- Dependent on Plasminogen Activation

Time Frame for Hemostasis

Platelets

<u>Primary</u> Hemostasis

- Vessel constriction occurs immediately
- Platelet adhesion occurs in seconds
- Platelet aggregation takes minutes

Coagulation Factors

<u>Secondary</u> <u>Hemostasis</u>

- Activation of coagulation factors occurs in seconds
- Fibrin forms in minutes

Fibrinolytic Proteins

Fibrinolysis

- Activation of fibrinolytic proteins happens immediately
- Dissolving the thrombus requires hours

Systems Involved in Hemostasis

Vascular system

• Injured vessel initiates vasoconstriction

Platelet System

• Injured vessel exposes collagen that initiates platelet aggregation and help form plug

Coagulation System

 protein factors of intrinsic and extrinsic pathways produce a permanent fibrin plug

HEMOSTASIS — Physiologic Process to Stop Bleeding

Phase	Key Events	Molecules Involved	
1. Vasoconstriction	Immediate response to injury	Endothelin, neural reflex	
2. Primary Hemostasis	Platelet adhesion, activation, aggregation $ ightarrow$ platelet plug	vWF, GPIb, GPIIb/IIIa, TXA2, ADP	
3. Secondary Hemostasis	Activation of coagulation cascade \rightarrow fibrin mesh stabilizes plug	Thrombin (IIa), fibrinogen → fibrin	
4. Clot Stabilization and Retraction	Fibrin crosslinking	Factor XIIIa	
5. Fibrinolysis	Breakdown of clot tPA, plasmin, D-dimers		

Virchow's Triad

Changes in blood coagulability Platelets, Coagulation Factors & Inhibitors, Fibrinolysis

Changes in vessel wall Endothelial changes due to inflammation or atherogenesis Changes in blood flow Rheology in vessels

Dr. Rudolph Virchow 1821-1902

Virchow's Triad – 3 Major Risk Factors

Factor	Example
1. Endothelial injury	Atherosclerosis, vasculitis, surgery
2. Abnormal blood flow	Stasis (immobilization, AFib), turbulence
3. Hypercoagulability	Inherited (e.g. Factor V Leiden) or acquired (e.g. cancer, antiphospholipid syndrome)

PHASES OF HEMOSTASIS

1. Vascular Spasm (Vasoconstriction)

•Trigger: Endothelial injury → transient vasoconstriction
 •Mediators: Endothelin (vasoconstrictor), neural reflexes
 •Purpose: Minimize blood loss

Steps of Hemostasis

2. Primary Hemostasis: Platelet Plug Formation

A. Platelet Adhesion

Injury exposes subendothelial collagen and von Willebrand factor (vWF)
Platelets bind to vWF via GP lb receptor

B. Platelet Activation

•Platelet shape change: disc → spiky

•Degranulation:

- **Dense granules**: ADP, Ca²⁺, serotonin
- Alpha granules: vWF, fibrinogen, PF4

•ADP $\rightarrow \uparrow$ GPIIb/IIIa expression

•Thromboxane A2 (TXA2): vasoconstriction, platelet aggregation

C. Platelet Aggregation

•Platelets bind via **fibrinogen bridges** using **GPIIb/IIIa** receptors **Result**: **Unstable platelet plug**

Resting platelets

Activated platelets

Platelet Plug Formation

- Platelets do not stick to each other or to blood vessels
- Upon damage to blood vessel endothelium platelets:
 - With the help of von Willebrand factor (VWF) adhere to collagen
 - Are stimulated by thromboxane A2
 - Stick to exposed collagen fibers and form a platelet plug
 - Release serotonin and ADP, which attract still more platelets
- The platelet plug is limited to the immediate area of injury by prostacyclin

Gp IIb-IIIa complex on platelet surfac

PF3 is crucial for intrinsic and common pathway efficiency.

Hemostasis: Vasoconstriction & Plug Formation

Figure 16-12: Platelet plug formation

Hemostasis

strands of a blood clot.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

A. VASOCONSTRICTION

https://www.youtube.com/watch?v=R8JMfbYW2p4

C. SECONDARY HEMOSTASIS

https://www.cast-pharma.com/portfolio/hemophilia/

Circulating platelets; endothelial damage Platelet adhesion Platelet aggregation

Platelet-Fibrin plug Clot retraction

Process of Coagulation

Inactive

Active

Coagulation

- Coagulation involves a **cascade** of **serine proteases** and cofactors that sequentially activate each other to convert **fibrinogen (Factor I)** to **fibrin**, forming a stable clot.
- Coagulation follows intrinsic and extrinsic pathways
- The final three steps of this series of reactions are:
 - Prothrombin activator is formed
 - Prothrombin is converted into thrombin
 - Thrombin catalyzes the joining of fibrinogen into a fibrin mesh

Coagulation Proteins

Coagulation proteins are designated by **Roman numerals (I– XIII)** except for factors IV (Ca²⁺) and VI (not used anymore)

• Zymogens

- enzyme precursors II, VII, IX, X, XI, XII, Prekallkrein
- When activated become serine proteases
- Cofactors
 - Nonenzymatic V, VIII, HMWK, Tissue factor(thromboplastin)
- Kinin factors prekallikrein, kallikrein, HMWK
 - Roles include coag activation as well as fibrinolytic activation

Factor	Name	Nature	Function
I	Fibrinogen	Soluble plasma glycoprotein	Converted to fibrin by thrombin
П	Prothrombin	Serine protease zymogen	Activated to thrombin (IIa)
	Tissue Factor (TF) / Thromboplastin	Membrane glycoprotein (not plasma protein)	Co-factor for VIIa; starts extrinsic pathway
IV	Calcium (Ca ²⁺)	lon	Required for many steps (II, VII, IX, X)
V	Labile factor	Glycoprotein cofactor	Cofactor for X activation of II
VII	Stable factor	Serine protease	Activates IX and X with TF
VIII	Anti-hemophilic A	Glycoprotein cofactor	Cofactor for IXa activation of X
IX	Christmas factor (B)	Serine protease	Intrinsic activation of X
X	Stuart-Prower	Serine protease	Common pathway activation of II
XI	Plasma thromboplastin antecedent	Serine protease	Activates IX
XII	Hageman factor	Serine protease	Activates XI, kallikrein, plasminogen
XIII	Fibrin-stabilizing factor	Transglutaminase	Crosslinks fibrin (stabilizes clot)

Coagulation Cascade (Simplified)

"Foolish People Try Climbing Long Slopes After Christmas Some People Have Fallen"

Intrinsic Pathway

Extrinsic Pathway

Secondary Hemostasis: Coagulation Cascade Activation

To stabilize the platelet plug with an insoluble fibrin mesh to stop bleeding. Coagulation factors = Proteins (mostly liver-made) that circulate as zymogens Activated in a cascade = Amplified enzymatic steps

Converts **fibrinogen** \rightarrow **fibrin** to stabilize the plug.

Pathways:

Intrinsic Pathway (Contact activation)

Trigger: Collagen, basement membrane, platelets
Factors: XII → XI → IX → VIII → X
Measured by: aPTT

Extrinsic Pathway (Tissue factor)

Trigger: Tissue factor (TF) from damaged tissue
Factor: VII → X
Measured by: PT

Common Pathway:

•X → Xa → Converts prothrombin (II) → thrombin (IIa)
•Thrombin:

- Converts fibrinogen → fibrin (Ia)
- Activates factors: V, VIII, XI, XIII

•Fibrin crosslinking by Factor XIIIa

1. Intrinsic Pathway (PTT)

Factors: XII, XI, IX, VIII
Trigger: Contact with negatively charged surfaces
Clinical: Hemophilia A (VIII), B (IX), C (XI)

2. Extrinsic Pathway (PT)

Factors: III (TF), VII
Trigger: Tissue injury
Clinical: Sensitive to Warfarin

3. Common Pathway

Factors: X, V, II, I, XIII
Final event: Thrombin converts fibrinogen to fibrin

Coagulation = Secondary Hemostasis

- The prothrombin time (PT) and its derived measures of prothrombin ratio (PR) and international normalized ratio (INR) are measures of the <u>extrinsic pathway of</u> <u>coagulation</u>.
- They are used to determine the <u>clotting tendency of</u> <u>blood</u>, in the measure of
 - warfarin dosage,
 - liver damage,
 - vitamin K status.
- The reference range for prothrombin time is usually around 12–15 seconds;
- the normal range for the INR is 0.8–1.2. PT measures factors I, II, V, VII, and X.
- It is used in conjunction with the activated partial thromboplastin time (aPTT) which measures the *intrinsic pathway*.

A. Extrinsic Pathway ("External trauma")

Trigger: Tissue factor (TF or Factor III)
 Components: Factor VII → Factor X
 Test: PT/INR (Prothrombin Time)

B. Intrinsic Pathway ("Internal vessel trauma")

- •Trigger: Collagen, basement membrane, platelets
- •Components: XII → XI → IX + VIII → X
- •Test: aPTT (Activated Partial Thromboplastin Time)

C. Common Pathway

- Trigger: Factor X → Xa
 Cascade: Xa + Va → II (Prothrombin) → IIa
 (Thrombin)
 → Thrombin: Converts fibrinogen (I) → fibrin (Ia)
- \rightarrow XIIIa cross-links fibrin

Pathway	Factors	Trigger	Test
Intrinsic	XII, XI, IX, VIII	Endothelial damage, collagen	аРТТ
Extrinsic	VII	Tissue factor (injury)	PT/INR
Common	X, V, II, I, XIII	Amplification loops	PT & aPTT

• Factors II, VII, IX, X – Vitamin K–dependent (liver-synthesized) Warfarin blocks synthesis; Heparin enhances antithrombin

PT & aPTT – Coagulation Screening Tests

Test	Pathway Assessed	Factors Tested	Used To Monitor
PT (Prothrombin Time)	Extrinsic + Common	I, II, V, VII , X	Warfarin
aPTT (Activated Partial Thromboplastin Time)	Intrinsic + Common	I, II, V, VIII, IX, X, XI, XII	Heparin

PT (Prothrombin Time) and PTT/aPTT (Partial Thromboplastin Time)

```
EXTRINSIC

\downarrow

Tissue Factor — FVII

\downarrow

COMMON PATHWAY

\downarrow

FX \rightarrow FII (Thrombin)

\downarrow

Fibrinogen \rightarrow Fibrin
```

INTRINSIC PATHWAY: $FXII \rightarrow FXI \rightarrow FIX \rightarrow FVIII \rightarrow FX \rightarrow ...$

PT (Prothrombin Time)

•Measures: Time to form a clot after adding tissue factor and calcium to **plasma**

•Sensitive to: Factor VII deficiency, as it's part of the extrinsic pathway

•Normal range: ~11–15 seconds

•**Reported as INR** (International Normalized Ratio) in warfarin monitoring:

- INR target for DVT/PE/AFib: 2.0–3.0
- For mechanical valves: **2.5–3.5**

Prolonged PT

Cause	Notes
Warfarin use	\downarrow Vitamin K-dependent factors
Vitamin K deficiency	Affects factor VII early
Liver disease	\downarrow production of clotting factors
DIC (late)	Consumption of factors
Factor VII deficiency	Isolated 个 PT
Early Coumadin effect	PT rises first due to short t½ of factor VII

aPTT (Activated Partial Thromboplastin Time)

- •Measures: Time to clot after adding kaolin,
- phospholipid, and calcium
- •Tests intrinsic and common pathways
- •Normal range: ~25–35 seconds

Prolonged aPTT

Cause	Notes
Heparin therapy	Activates antithrombin \rightarrow inhibits thrombin, FXa
Hemophilia A/B (VIII/IX deficiency)	Severe bleeding with 个 aPTT only
Lupus anticoagulant	个 aPTT but paradoxical hypercoagulability
vWD	Can prolong aPTT (Factor VIII relies on vWF)
DIC	Consumes factors VIII, IX, XI
Factor XI or XII deficiency	XII prolongs aPTT but not clinically significant bleeding

•PT ↑ first in Vitamin K deficiency or warfarin use (factor VII has shortest half-life)
•aPTT ↑ first in heparin use or intrinsic factor deficiency

•Liver failure: both PT and aPTT prolonged; factor V \downarrow (not vitamin K dependent)

•vWD: \uparrow bleeding time, possible \uparrow aPTT (\downarrow FVIII), normal platelet count

•**DIC**: \uparrow PT, \uparrow aPTT, \downarrow platelets, \downarrow fibrinogen, \uparrow D-dimer

APTT Reagent Composition

- Activator to convert FXII to FXIIa
- Phospholipid (replaces "in vivo" platelet surface on which coagulation reactions occur)
- CaCl₂ used to reintroduce calcium ions that were chelated by sodium citrate
- Referred to as "partial thromboplastin" since no Tissue Factor is used
 - Two-stage assay (activation and re-calcification)

Figure 18.13

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Secondary Hemostasis: Coagulation Cascade

https://youtu.be/cy3a00a2M		
Test	Pathway	Affected Factors
PT (Prothrombin Time)	Extrinsic	VII, X, V, II, I
INR	Normalized PT	Warfarin monitoring
aPTT	Intrinsic	XII, XI, IX, VIII, X, V, II, I
TT (Thrombin Time)	Final step	Conversion of fibrinogen to fibrin
Mixing Study	Distinguishe s deficiency vs inhibitor	Corrects = deficiency, No correction = inhibitor
D-dimer	Clot degradation product	DIC, PE, DVT

https://youtu.be/SGzp9wqeu84

11 1 -.....

Activated partial thromboplastin time

VITAMIN K–DEPENDENT FACTORS

Vitamin K Needed For:	II, VII, IX, X, Protein C, Protein S
Site	Liver
Inhibited by	Warfarin
Deficiency causes	↑ PT > PTT; bleeding tendency

REGULATORY ANTICOAGULANT PROTEINS

Protein	Function	Clinical Notes
Antithrombin III	Inhibits IIa, Xa, IXa, XIa, XIIa	↑ by Heparin
Protein C	Inhibits Va, VIIIa (with S)	Activated by thrombin- thrombomodulin
Protein S	Cofactor for C	Free form active; ↓ in pregnancy, OCP use
TFPI (Tissue Factor Pathway Inhibitor)	Inhibits VIIa-TF complex	Natural brake of extrinsic path

LIVER & SYNTHESIS • Most clotting factors made in the liver

•Exceptions:

•vWF: Made in endothelium & megakaryocytes

•Factor VIII: Made in endothelial cells

Disease	Deficient Factor	Inheritance	Presentation
Hemophilia A	VIII	X-linked recessive	Hemarthroses, 个 aPTT
Hemophilia B (Christmas disease)	IX	X-linked recessive	Same as above
Hemophilia C	XI	AR, Ashkenazi Jews	Mild bleeding
Factor V Leiden	Factor V resistant to Protein C	AD	Hypercoagulability, DVT
DIC	Consumption of all factors	Acquired	↑ PT/PTT, ↓ fibrinogen, ↑ D- dimer
Vitamin K Deficiency	II, VII, IX, X, C, S	Acquired	Bleeding, 个 PT > PTT
Liver Disease	Global \downarrow synthesis	Acquired	\uparrow PT and PTT, \downarrow fibrinogen

Termination and Regulation of Coagulation

Antithrombin III (ATIII): Inhibits thrombin, Xa, IXa, XIa, XIa
Protein C & S: Inactivate Factors Va and VIIIa
TFPI (Tissue Factor Pathway Inhibitor): Blocks extrinsic pathway
Endothelial factors: NO, prostacyclin (PGI₂), heparan sulfate

Fibrinolysis

•Plasminogen → Plasmin (via tPA)

•Plasmin breaks down fibrin into D-dimers

•Inhibited by: α 2-antiplasmin

Injury \rightarrow Vasoconstriction (Endothelin) \downarrow vWF exposure + Collagen \downarrow Platelet Adhesion (GPIb) \downarrow Activation (ADP, TXA2, Ca²⁺) \downarrow Aggregation (GPIIb/IIIa + fibrinogen) \downarrow Plug + Coagulation cascade \rightarrow Fibrin \downarrow Stable clot \downarrow Fibrinolysis (tPA \rightarrow Plasmin) The **fibrinolytic system** dissolves fibrin clots once hemostasis has stabilized, **preventing pathological thrombosis and maintaining vessel patency.**

- •Opposes the coagulation cascade
- •Balances clot formation and removal
- Definition: temporary fibrin clot systematically and gradually dissolved as the vessel heals
- Key components
 - Plasminogen (inactive form)
 - Plasminogen activators
 - Plasmin
 - Fibrin
 - Fibrin Degradation Products (FDP)
 - Inhibitors of plasminogen activators and plasmin

Inhibitors of Fibrinolysis

- Plasminogen Activator Inhibitors (PAI)
- α₂ –antiplasmin
- α₂-macroglobulin

Tissue plasminogen activator (IPA)

Component	Туре	Function
Plasminogen	Inactive zymogen	Circulates in plasma, incorporated into clots
Plasmin	Active serine protease	Degrades fibrin and fibrinogen \rightarrow FDPs
tPA (Tissue Plasminogen Activator)	Activator	Endothelial-derived, activates plasminogen → plasmin on fibrin
uPA (Urokinase Plasminogen Activator)	Activator	Works in ECM remodeling and pathology
α2-Antiplasmin	Inhibitor	Inhibits free plasmin in plasma
PAI-1 (Plasminogen Activator Inhibitor- 1)	Inhibitor	Inhibits tPA and uPA; prevents premature fibrinolysis
Fibrin Degradation Products (FDPs)	Fragments	Includes D-dimer – marker of clot breakdown

Coagulation	Fibrinolysis
Forms clot	Removes clot
Fibrinogen \rightarrow Fibrin (via thrombin)	Fibrin \rightarrow FDPs (via plasmin)
Stabilized by Factor XIIIa	Dissolved by plasmin
Promotes hemostasis	Prevents thrombosis

Test	Use
D-dimer	Indicates recent fibrin clot formation AND breakdown
↑ D-dimer	DIC, DVT, PE, MI, post-surgery, COVID-19
Euglobulin lysis time	Assesses fibrinolytic activity (rarely used clinically)

•Prolonged APTT may indicate:

- 1. use of heparin (or contamination of the sample)
- antiphospholipid antibody (especially lupus anticoagulant, which paradoxically increases propensity to thrombosis)
- 3. coagulation factor deficiency (e.g. hemophilia)

LAB TESTS

Test	Pathway	Prolonged In
PT (Prothrombin Time)	Extrinsic (VII) + common	Warfarin, liver disease
aPTT (Activated Partial Thromboplastin Time)	Intrinsic (XII, XI, IX, VIII) + common	Heparin, hemophilia
INR	Normalized PT	Used to monitor warfarin
D-dimer	Fibrin degradation	个 in DIC, PE, DVT
Bleeding Time	Platelet function	↑ in vWD, thrombocytopenia

Tests for Primary Hemostasis

Bleeding Time: The time taken for bleeding to stop after a standardized skin incision — assesses primary hemostasis (platelet plug formation).

NORMAL RANGE

• 2–7 minutes

(depending on technique — e.g., lvy method)

- Assesses all components of Virchow's triad

WHAT DOES IT MEASURE?

- Platelet function, not number
- Vascular integrity
- Interaction between platelets and endothelium
- Does **not** measure coagulation cascade or fibrin formation (secondary hemostasis)

Bleeding time tests:

- Platelet adhesion (via vWF)
- Platelet aggregation
- Initial platelet plug formation

Condition	Mechanism
Thrombocytopenia	\downarrow Platelet count
von Willebrand Disease (vWD)	↓ Platelet adhesion (vWF defect)
Bernard-Soulier syndrome	Defective Gplb $\rightarrow \downarrow$ platelet adhesion
Glanzmann thrombasthenia	Defective GpIIb/IIIa $\rightarrow \downarrow$ aggregation
Uremia (kidney failure)	Platelet dysfunction due to toxins
NSAIDs, Aspirin	Inhibit COX $\rightarrow \downarrow$ TxA2 $\rightarrow \downarrow$ aggregation
Leukemias, Myelodysplasia	Marrow failure $\rightarrow \downarrow$ platelet production
Scurvy	Defective collagen $\rightarrow \uparrow$ capillary fragility

Platelet Aggregation studies

- Measure ability of platelets to aggregate, in vitro, when subjected to various stimulators (agonists)
- Predominantly assesses function of platelet glycoprotein IIb/IIIa receptor

WHY DO WE STUDY THIS?

- Diagnose inherited platelet disorders
- Identify acquired dysfunctions (drugs, systemic disease)
- Complement bleeding time, platelet count, and PFA-100 findings (PFA (Platelet Function Assay)

Von Willebrand Factor (VWF) assays

– Measure amount and function of VWF, a protein that works with platelets so that they adhere to site of injury

- Assesses function of VWF ligand in its interaction with **platelet glycoprotein Ib receptor**

What is Vitamin K?

•Fat-soluble vitamin (K₁ = phylloquinone from plants; K₂ = menaquinone from gut flora)

•Essential **cofactor** in γ -carboxylation of certain glutamate residues on clotting factors

Play key roles in the regulation of three physiological processes:

Blood coagulation:

- (prothrombin (factor II),
- factors VII,
- IX,
- X,
- protein C,
- protein S, and protein Z).

•Bone metabolism:

 osteocalcin, also called bone Gla-protein (BGP), and matrix gla protein (MGP).

•Vascular biology.

Like other liposoluble vitamins (A, D, E), <u>vitamin K is stored in</u> <u>the fat tissue of the human body.</u>

Role of vitamin K

VITAMIN K-DEPENDENT COAGULATION FACTORS

Factor	Function
II (Prothrombin)	Converts to thrombin \rightarrow fibrin formation
VII	Initiates extrinsic pathway
ΙХ	Activates factor X in intrinsic pathway
X	Final common pathway activator
Protein C & Protein S	Natural anticoagulants – degrade Va and VIIIa

•Enables calcium (Ca²⁺) binding \rightarrow essential for membrane interaction and activation of clotting factors •First lab abnormality in vitamin K deficiency = \uparrow **PT**

•Protein C is depleted faster than procoagulant factors \rightarrow hypercoagulable state early in warfarin therapy

•Warfarin-induced skin necrosis = due to Protein C depletion

•INR monitoring for patients on warfarin

•Vitamin K does NOT reverse heparin (use protamine sulfate instead)

Drug	Target	Use
Aspirin	Irreversible COX-1 inhibition $\rightarrow \downarrow$ TXA ₂	Antiplatelet
Clopidogrel / Ticagrelor	ADP receptor (P2Y12) blocker	Antiplatelet
Abciximab	GPIIb/IIIa inhibitor	Acute coronary syndrome
Heparin	Activates ATIII $\rightarrow \downarrow$ thrombin/Xa	Anticoagulation
LMWH (e.g., enoxaparin)	Preferentially inhibits Xa	Anticoagulation
Warfarin	Inhibits epoxide reductase $ ightarrow \downarrow$ Vit K factors	Long-term anticoagulation
tPA (alteplase)	Plasminogen activator	Thrombolysis
Aminocaproic acid	Inhibits fibrinolysis	Antidote to tPA

Defect	Associated Factor	Key Features	Test
Hemophilia A	Factor VIII	X-linked recessive, 个 aPTT	aPTT 个
Hemophilia B (Christmas disease)	Factor IX	Same as A	aPTT 个
von Willebrand Disease	vWF (and low VIII)	Mucosal bleeding, 个 bleeding time, 个 aPTT	BT 个, aPTT 个
Vitamin K Deficiency	Factors II, VII, IX, X, protein C/S	Bleeding, neonates, warfarin	PT 个 first, then aPTT
DIC	All factors consumed	 ↑ PT/PTT, ↓ fibrinogen, ↑ D-dimer 	All abnormal
Immune Thrombocytopenic Purpura (ITP)	Autoantibodies to GPIIb/IIIa	↓ Platelets, normal PT/PTT	Isolated thrombocytopenia
Bernard-Soulier Syndrome	GPIb defect	Large platelets, platelet adhesion defect	BT 个
Glanzmann Thrombasthenia	GPIIb/IIIa defect	Platelet aggregation defect	BT 个

Role of PT, PTT: Warfarin, Heparin Monitoring

Anticoagulant	PT	PTT
Low dose Heparin	Normal	Prolonged
High dose heparin	Prolonged	Prolonged
Low dose warfarin	Prolonged	Normal
High dose warfarin	Prolonged	Prolonged

THROMBOSIS — Pathologic Clot Formation

Thrombosis = inappropriate activation of hemostatic mechanisms **inside intact vessels**

Туре	Description	Key Features
Arterial thrombi	High shear stress; platelet-rich	Pale, grow retrograde
Venous thrombi	Stasis; fibrin + RBC-rich	Red/stasis thrombi, grow toward heart
Mural thrombi	Occur in heart or large arteries post-MI	Risk of embolism
Vegetations	On heart valves	Infective endocarditis

Fates of a Thrombus

•Propagation (extends)
•Embolization (dislodges → distant site)
•Dissolution (fibrinolysis via tPA)
•Organization & recanalization (ingrowth of cells/fibroblasts)

PETECHIAE VS. PURPURA VS. ECCHYMOSIS

Petechiae Less than 2 mm Purpura 2 mm to 1 cm

LIFEPATHDOC.COM

Ecchymosis More than 1 cm

- Examination Platelet Disease
 Mucosal/cutaneous bleeding
 Lack vessel protection by submucosal tissue
 Bleed immediately after vascular trauma
 - Petechiae
 - From small capillary
 - In areas of increased venous pressure (dependent parts of the body)
 - Asymptomatic and not palpable
 - D/D small telangiectasias

(Angiomas, Vasculitic purpura, Wiskott-Aldrich Syndrome, Leukemia, Vit K deficiency

• Purpura

- Characteristically purple in colour
- Small, multiple, and superficial in location
- Develop without noticeable trauma / not spread into deeper tissues
- Seen in (Acute / Chronic leukemia, Vitamin K deficiency)

Physical Examination

• Petechiae

Examination Coagulation Disorders

• Ecchymoses

- Large palpable ecchymoses
- Spreading into deep tissue haematomas Hemarthrosissevere coagulation disorder- haemophilia
- Coagulation disorder bleeding onset may be delayed after surgery

52 year old male

Severe Hemophilia

Now bleeds 3x month Severe muscle wasting

Joint immobility

Atrophic skin changes

HIV and HCV +ve

Megakaryocyte

Clinical View: Bleeding and Blood Clotting Disorders₁

Hemophilia: bleeding disorders

- Hemophilia A and hemophilia B most common
 - Occur in X-linked recessive pattern
 - Males exhibit full-blown disease; females typically carriers
 - Result from deficiency of factor VIII, factor IX, or factor XI (more rare)

Thrombocytopenia: platelet deficiency

- Increased breakdown or decreased production
- May occur in bone marrow infections or cancer

Certain drugs interfere with clotting (can cause bleeding)

• E.g., aspirin, ibuprofen, warfarin, ginkgo

Clinical View: Bleeding and Blood Clotting Disorders²

Hypercoagulation

- Increased tendency to clot blood
- Can lead to thrombus, blood vessel clot
- When dislodged within blood, embolus
- If lodges in lungs, **pulmonary embolism**
 - Can cause breathing problems and death
- Can have drug-related, environmental, and genetic causes
 - E.g., birth control pills, prolonged inactivity

. "Teenage boy with joint swelling and prolonged bleeding after dental procedure":
•Likely Hemophilia A/B
•Inheritance: X-linked recessive
•Labs: ↑ aPTT, normal PT/BT

Woman with heavy periods, nosebleeds, prolonged bleeding after surgery, and normal platelet count":
•Think: vWD
•Labs: 个 BT, 个 aPTT
•Treatment: Desmopressin (个 vWF release)

*"Patient on heparin develops thrombocytopenia and clots":*Diagnosis: HIT (Heparin-Induced Thrombocytopenia)
Pathogenesis: IgG to PF4–Heparin complex → platelet activation
Switch to: Argatroban or fondaparinux